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Summary 

This study investigates the effects of uncertainty in rock-
physics models on estimates of reservoir parameters from 
joint inversion of seismic AVA and CSEM data. The reser-
voir parameters are related to electrical resistivity using 
Archie’s law, and to seismic velocity and density using the 
Xu-White model. To account for errors in the rock-physics 
models, we use two methods to handle uncertainty: (1) the 
model outputs are random functions with modes or means 
given by the model predictions, and (2) the parameters of the 
models are themselves random variables. Using a stochastic 
framework and Markov Chain Monte Carlo methods, we 
obtain estimates of reservoir parameters as well as of the 
uncertainty in the estimates. Synthetic case studies show that 
uncertainties in both rock-physics models and their 
associated parameters can have significant effects on 
estimates of reservoir parameters. Our method provides a 
means of quantifying how the uncertainty in the estimated 
reservoir parameters increases with increasing uncertainty in 
the rock-physics model and in the model parameters. We find 
that in the example we present, the estimation of water 
saturation is relatively less affected than is the estimation of 
clay content and porosity. 

Introduction 

Rock-physics models are needed to estimate reservoir 
parameters from seismic AVA and CSEM data. In practice, 
model parameters are often derived from nearby well logs. 
First, an appropriate family of rock-physics models is chosen, 
such as the sand-clay models of Xu and White (1995) for 
seismic velocities and density, and Archie’s law (Archie, 
1942) for resistivity. Second, the parameters associated with 
the rock-physics models are estimated by fitting them to the 
selected well log data. Since the relationships between 
reservoir parameters and geophysical attributes are nonlinear 
and non-unique, the derived rock-physics models and their 
parameters are uncertain to some extent. Such uncertainty 
may significantly affect estimates of reservoir parameters 
from geophysical data.  

Traditional methods for analyzing uncertainty in rock-physics 
models entail varying a small subset of the rock-physics 
model parameters while keeping others unchanged. Such 
methods are valid only when the parameters being 
investigated are uncorrelated with those being kept fixed. 
Since rock-physics parameters often depend upon each other, 
the methods have limited validity. Additionally, those 
methods typically analyze only the effects of uncertainty in 

the rock-physics model parameters (Type 2), but not the 
uncertainty in the rock-physics model outputs (Type 1).  

An alternative for studying the effects of uncertainty in rock-
physics models is to utilize a Bayesian framework to 
represent geophysical properties as random functions of 
reservoir parameters. In this method, the rock-physics models 
derived from borehole logs provide only reference values 
(e.g., means or modes) for the reservoir parameters being 
estimated.  The actual values are realizations drawn from the 
estimated a posteriori probability density functions, 
conditioned on the uncertainty in the rock-physics model as 
well as on the input seismic AVA and CSEM data. An 
example of such an approach is given by Bacharach (2006), 
where sediment bulk and shear moduli and density are 
considered to be random functions of reservoir water 
saturation and porosity, and the unknown reservoir 
parameters are estimated jointly by conditioning on seismic 
AVA data. Bacharach investigates only the effect of 
uncertainty in the rock-physics models (Type 1), but not the 
effect of uncertainty in the associated model parameters 
(Type 2). In practice, both types of uncertainty exist, and they 
may affect the estimates of reservoir parameters differently. 

In this study, we investigate the effects of uncertainty in 
rock-physics models on reservoir parameter estimation, 
caused by uncertainty in the rock-physics model  (Type 1) 
and uncertainty in the model parameters (Type 2). We 
develop a stochastic method based on a layered reservoir 
model, similar to the one studied by Chen et al. (2007), with 
the addition of stochastic rock-physics models to account for 
their contribution to the uncertainty. We use Markov chain 
Monte Carlo (MCMC) methods to explore the joint a 
posteriori probability density functions of the inverted 
parameters. 

Method 

Stochastic rock-physics models  

We relate reservoir water saturation Sw and porosity j to 
electrical resistivity using Archie’s law (Archie, 1942):  

     m n
b wr r S ϕ− −= .                                       (1) 

Here, r denotes the electrical resistivity of a given reservoir 
layer and the model parameters rb, m, and n denote brine 
resistivity and model exponents of water saturation and 
porosity, respectively. Two types of uncertainty may exist in 
this equation. The first is the uncertainty associated with the 
model parameters rb, m, and n (Type 2). To account for such 
uncertainty, we consider those parameters to be random 
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variables with given distributions. The second type of 
uncertainty is that associated with the model itself (Type 1), 
such as the discrepancy between the measured resistivity and 
the predicted resistivity; i.e., Archie's Law may not be an 
appropriate model for some situations. Similarly, to account 
for the effect of this type of uncertainty, we consider 
predicted resistivity to be a random function of water 
saturation, porosity, and the model parameters, while using 
Archie's Law to calculate the mode of the distribution. 

We use a Gamma distribution function with shape parameter 
a and scale parameter b to describe the uncertainty 
associated with the model given in Equation 1. Let the vector 

1 ( , , )T
br m n=

�
, where T denotes transpose. Let the mode of 

the Gamma distribution be equal to the resistivity predicted 
by Equation 1. Consequently, we obtain the conditional 
distribution function of resistivity given reservoir parameters 
Sw and j and unknown model parameters qqqq1, as follows: 
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We relate seismic P- and S-wave velocity and density to 
reservoir parameters using a clay-sand mixture model 
developed by Xu and White (1995). The main parameters 
associated with the Xu-White model are the bulk and shear 
moduli and density of sand grains, clay, and fluid, and the 
pore aspect ratios of sand and clay. The reservoir parameters 
that affect seismic P- and S-wave velocity and density are 
water saturation, clay content, and porosity. We use the 
vector qqqq2 to represent the entire set of model parameters, and 
consider the parameters to be random variables in order to 
model parameter uncertainty (Type 2). In practice, the model 
parameters are typically estimated from logs from nearby 
wells and have unknown uncertainties. 

To consider overall uncertainty in the Xu-White model for a 
fixed set of model parameters, we assume that the estimated 
seismic velocity and density calculated from reservoir 
parameters using the Xu-White model are not exact. We 
model them as a truncated multivariate Gaussian distribution 
with means determined from the Xu-White model and a 
covariance matrix determined from an assumed correlation 
structure and coefficients of variation. Let the variables VP, 
VS, and r denote seismic P- and S-wave velocity and density, 
respectively. Let eP, eS, and er represent additive errors in the 
rock-physics model results. Then the conditional probability 
density function is given by 

( )1
2 3

1
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π
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Σ

� � �              (3) 

whereΣ  is the covariance matrix, eeee is the vector (eP, eS, er)
T, 

and c represents shale content. 

Bayesian model  

The Bayesian model was developed for a layered reservoir. 
In the reservoir layer, we estimate water saturation Sw, 
porosity j, and shale content c. As in the model given by 
Chen et al. (2007), we add several layers above and below the 
reservoir to account for uncertainty in selecting the time 
window for seismic AVA inversion. For those layers, we 
invert for elastic bulk and shear moduli (K and mmmm) and density 
rrrro, from which we calculate VP and VS. Because the 
resistivity ro of the seawater and the sedimentary overburden 
also affects the estimates of reservoir parameters, we also 
consider it as an unknown vector in this model.  

Unlike the analysis presented in Chen et al. (2007), we use 
stochastic rock-physics models in this study. For given 
reservoir parameters, the calculated reservoir seismic 
velocities VP and VS, density rrrr, and electrical resistivity r are 
all considered to be random variables. Let the matrix R 
denote seismic AVA data, which are explicit functions of 
seismic velocity and density within the reservoir, and implicit 
functions of elastic properties (K, mmmm, and rrrro) in the zones 
outside the reservoir. Let the matrix E denote CSEM data, 
which are functions of reservoir resistivity r and overburden 
resistivity ro. Since CSEM and seismic AVA data are two 
different types of geophysical measurements, it is reasonable 
to assume that they are statistically uncorrelated. Therefore, 
we obtain the following Bayesian model: 
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Equation 4 defines a joint a posteriori probability distribution 
function of all unknown parameters, which is known up to a 
normalizing constant. The first and second terms on the right 
side of the equation are the likelihood functions of seismic 
AVA data and CSEM data, respectively, and are calculated 
from forward modeling. The third and fourth terms on the 
right side of the equation are the conditional pdfs given 
reservoir parameters and parameters associated with the rock 
physics models; for r, this is given by Equation 2. The final 
term on the right side of the equation is the a priori 
distribution of the unknown variables, which we take to have 
constant pdfs within reasonable bounds.    

Synthetic Study 

The synthetic model includes an oil-bearing reservoir 
embedded in a shale section, lying 1200 m under the seafloor, 
with shale content, porosity, and water saturation of 0.1, 0.32, 
and 0.1, respectively. Outside the reservoir, the shale content 
and water saturation in the shale section are constant (100%), 
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whereas the porosity decreases and the background resistivity 
increases with increasing depth from the seafloor.  

The seismic AVA data are NMO-corrected angle gathers 
generated by convolving a 25 Hz Ricker wavelet with the 
angle-dependent reflectivity, which is calculated using the 
Zoeppritz equations (Aki and Richards, 1980) for each layer 
interface. The traces are sampled at 2 ms for seven incidence 
angles (i.e., 5, 10, 15, 20, 25, 30, and 35 degrees). We assume 
that the synthetic seismic data include spatially correlated 
Gaussian random noise and that the spatial correlation is 
determined by an exponential variogram with an integral 
length of 12 ms. The variance of the Gaussian noise is angle 
dependent; the signal-to-noise ratios (SNRs) are 12, 11, 10, 9, 
8, 7, and 5 from the near to the far offsets. We use the Xu-
White model (Xu and White, 1995) with parameters given in 
Table 1 to link reservoir parameters to P- and S-wave 
velocity and density. (The brine resistivity varies with depth; 
it is shown for the reservoir level.) 

Table 1. Parameters for the Xu-White model and Archie’s 
law 

Types Parameters Values 
Bulk modulus (GPa) 42.584 
Shear modulus (GPa) 40.470 
Density (g/cm3) 2.650 

 
Sand 

Aspect ratio 0.09 
Bulk modulus (GPa) 34.260 
Shear modulus (GPa) 18.504 
Density (g/cm3) 2.680 

 
Clay 

Aspect ratio 0.06 
Bulk modulus (GPa) 3.22 Brine 
Density (g/cm3) 1.09 
Bulk modulus (GPa) 0.75 Oil 

 Density (g/cm3) 0.7091 
Porosity exponent 2.00 
Saturation exponent 2.00 

 
Archie’s law 

Reservoir brine resistivity 
(W-m) 

0.11 

The marine CSEM data consist of the electric fields 
measured at six receivers deployed on the seafloor, with an 
electric dipole source at five different frequencies (0.10, 0.25, 
0.50, 0.75, and 1.00 Hz). Six source-receiver offsets (4, 5, 6, 
7, 8, and 10 km) are used. The relationship between electrical 
resistivity and water saturation and porosity is given by 
Archie's law using the parameters listed in Table 1. We added 
2% to 4% relative noise to the synthetic data, with higher 
noise levels at the farther offsets. 

Inversion using rock-physics models with model output 
uncertainty 

We first focus on studying the effect of inherent uncertainty 
(i.e., on computed VP, VS, etc.) in the rock-physics model 

(Type 1) on estimates of reservoir parameters. We invert the 
synthetic AVA and CSEM data (containing noise) using 
rock-physics models with uncertainty equivalent to 
coefficients of variation (CV) of 1%, 3%, 5%, and 10%.  

Figure 1 shows the estimated probability density functions 
(pdfs) of water saturation, shale content, and porosity using 
the stochastic rock-physics models. It is evident that 
uncertainty in the rock-physics models has significant effects 
on the estimates of reservoir parameters. With an uncertainty 
of 5% or more in the rock-physics models, even with our 
low-noise CSEM data, we cannot estimate shale content. For 
porosity, the estimates also become poorer with increasing 
uncertainty in the rock-physics models. Compared to shale 
content and porosity, the water saturation estimate is less 
sensitive to uncertainty in the rock-physics models. 

Inversion using rock-physics models with both model and 
parameter uncertainty   

Parameter uncertainty (Type 2) in rock-physics models (e.g., 
in the Archie's Law exponents m and n) is often ignored 
because of the difficulty of incorporating it in the estimation. 
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Figure 1. The estimated pdfs of water saturation, shale 
content, and porosity when the rock-physics models have 
the specified levels of overall uncertainty. 
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The Bayesian model developed in this study provides a 
flexible, integrated approach for investigating all sources of 
uncertainty simultaneously. To investigate the effects of 
parameter uncertainty, we assume that each model parameter   
lies in a given range and that the probability of finding any 
value within that range is constant. In the following, we 
consider four levels of uncertainty: 1%, 3%, 5%, and 10% 
around the corresponding true values of the model 
parameters, while we keep the overall uncertainty in the rock-
physics model outputs constant (at 1%).  

Figure 2 shows the estimated pdfs of water saturation, shale 
content, and porosity for this case. For our low-noise CSEM 
data (i.e., relative errors between 2% and 4%) and small 
inherent errors in the rock-physics models (1%), the 
estimated reservoir parameters still have unsatisfactorily 
large errors when the uncertainty in the rock-physics model 
parameters is 5% or more. Note that water saturation is again 
the most robustly estimated quantity. 

Conclusions 

The Bayesian model that we have developed provides a 
unified and conceptually consistent approach for analyzing 
various uncertainties in reservoir parameter estimation, such 
as measurement errors, model uncertainties, and parameter 
uncertainties. The synthetic study shows that uncertainty in 
both rock-physics models and in their associated parameters 
can, as expected, have significant effects on reservoir 
parameter estimation, especially when those models and their 
associated parameters are subject to errors of several percent 
or more. Without considering uncertainty in rock-physics 
models, we may be overly optimistic about the precision of 
our estimates of reservoir parameters. The framework 
presented here also provides a method for estimating the 
impact of other sources of uncertainty on inversion results. 
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Figure 2. The estimated pdfs of water saturation, shale 
content, and porosity when the parameters associated with  
the stochastic rock-physics models have the specified levels 
of uncertainty; the overall model uncertainty is set to 1% for 
each case. Comparison with Figure 1 shows that a given 
level of uncertainty in the model parameters has a smaller 
effect than the same level of uncertainty in the model result. 

 


